A WEB-BASED INTERACTIVE TOOL FOR MULTI-RESOLUTION 3D MODELS OF A MAYA ARCHAEOLOGICAL SITE

G. Agugiaroa, F. Remondinoa, G. Girardib, J. von Schwerinc, H. Richards-Rissettod, R. De Amicisb

a 3D Optical Metrology Unit, Bruno Kessler Foundation, Trento, Italy
b Fondazione Graphitech, Trento, Italy
c Dept. of Art and Art History, University of New Mexico, USA
d HUMlab, Umeå University, Sweden

3D-Arch 2011
Trento, 3 March 2011
Overview

• The archaeological site of Copan
 – Real-world and modelled

• The “QueryArch3D” tool
 – Why such a tool?
 – Characteristics
 – Implementation status and first results

• Conclusions & Outlook
• The archaeological site of Copan
 – Real-world and modelled

• The “QueryArch3D” tool
 – Why such a tool?
 – Characteristics
 – Implementation status and first results

• Conclusions & Outlook
G. Agugiaro - A web-based interactive tool for multi-resolution 3D models of a Maya archaeological site
G. Agugiaro - A web-based interactive tool for multi-resolution 3D models of a Maya archaeological site
• Copan facts:
 – Archaeological area spans over 24 km2
 – Over 3700 structures (ca. 450-850 A.D.)
 • Temples,
 • Palaces,
 • Altars,
 • Stelae,
 • Residential buildings,
 • etc.

• Copan is considered the «Paris of the Maya»
Copan, Honduras

Temple 16

Temple 26, Hieroglyphic stairway

Altar G

Altar Q

G. Agugiaro - A web-based interactive tool for multi-resolution 3D models of a Maya archaeological site
Temple 22 in the East court, its interior doorframe (with skull detail), and the corner mask.
• Variety of objects and sizes...
• ...acquired using various modelling paradigms in the course of time:
 – Tabular data,
 – Images,
 – 2D maps (some of them digitised),
 – 2.5 maps,
 – 3D high-resolution reality-based models,
 – 3D reconstructions
Problem definition

• Problem: How to manage, query, compare, ..., ..., ..., integrate and use all these data together?

• An ideal “tool” should at least

 1. and query of geometries & attributes,
 2. allow 3D interactive visualisation of geodata...
 3. handle multi-resolution models and all “standard data”,
 4. be accessible locally, but also on-line
• An out-of-the-box, unique tool does not exist so far
 – (Web)GIS tools are still mostly 2D-2.5D
 – Several models of the same object (different scales, resolutions, quantities of information)
 – Handling "heavy" reality-based models can be problematic

 – Example: Google Earth
 • Limited query possibilities
 • Geometric models are relatively simple
Overview

• The archaeological site of Copan
 – Real-world and modelled

• The “QueryArch3D” tool
 – Why such a tool?
 – Characteristics
 – Implementation status and first results

• Conclusions & Outlook
Introducing…

The **QueryArch3D** tool

- takes inspiration from existing approaches
- tailored to the needs of Copan

Development steps:
1. Define a conceptual schema for LoDs, geometric and semantic hierarchies (i.e. the part-of-relations)
2. Check & structure existing data accordingly
3. Data integration & homogenisation
4. Develop the visualisation & query front-end
Step 1: LoDs and hierarchies

• 4 Levels of Detail
 – LoD1: Single (or set of) prismatic geometries
 – LoD2: 3D models (only exteriors)
 – LoD3: 3D models (with interiors)
 • Some elements can be (simplified) reality-based models
 – LoD4: 3D high-resolution models or architectonic details (reality-based)
Step 1: LoDs and hierarchies

G. Agugiaro - A web-based interactive tool for multi-resolution 3D models of a Maya archaeological site
Step 1: LoDs and hierarchies

Example of semantic hierarchy for a Copan temple

Temple → Substructure → Platform
 ↓ Axial stairway
 ↓ Salient

Superstructure → Storey#

Exterior → Ext. doorway
 ↓ Ext. walls
 ↓ Ext. sculptures
 ↓ Molding
 ↓ Roof

Interior → Rooms
 ↓ Walls
 ↓ Ceiling
 ↓ Floor

Int. doorway
Datasets used (so far):

- LoD1: extrude 2D features from a shapefile with features height info
- LoD2/3: Temple 22 model from 3ds file
- LoD3: Stelae and arch. elements (reality-based, simplified models)
- LoD4: Stelae and arch. elements (reality-based, high resolution)

Attribute data from dbf, txt files and Filemaker Pro
Step 2: Check & structure existing data

• Data aggregation:
 – Aggregate the LoD1 geometries from over 19000 geometric features to ca. 3700 Copan structures

From over 19000 polygons... ...to ca. 3700 structures
Step 2: Check & structure existing data

• Data disaggregation:
 • Divide LoD2-4 models into subparts
Step 3: Data integration

• All geometries aligned and georeferenced
• Geometries linked to attributes
• All data imported and stored in PostgreSQL/PostGIS

• Currently:
 – LoD1: 3737 obs, 123980 tris
 – LoD2: 14 obs, 2588 tris
 – LoD3: 108 obs, 197791 tris
 – LoD4: 68 obs, 791854 tris
Step 4: Front-end development

- The visualisation and query front-end has been implemented using Unity 3D
 - game engine
 - scripting capabilities (quick development time)
 - has also libraries to access remote databases
 - on-line applications accessible through a free browser plugin

- Data retrieval by a PHP interface between Unity and PostgreSQL
Step 4: Front-end development

• **Navigation:**
 - aerial view (LoD1 only),
 - ground-based view (LoD1-2-3)
 - detail view (LoD4)
Step 4: Front-end development

Walk-through mode for LoD2 and LoD3

Detail view mode for LoD4
• Queries:
 – Attribute queries over the whole dataset ("Show structures built by ruler x", "Highlight all structures belonging to group y"):
 – Single-object queries, LoD dependent
 • LoD1: only global attributes
 • LoD2-4: global attributes + subpart info
 – Distance measurements and line-of-sight analyses between two selectable positions
Step 4: Front-end development

Query on attributes + highlight results

Query on click: LoD1 object

Query on click: LoD3 object

Query on click: LoD4 object
• The archaeological site of Copan
 – Real-world and modelled

• The “QueryArch3D” tool
 – Why such a tool?
 – Characteristics
 – Implementation status and first results

• Conclusions & Outlook
Conclusions

- A workflow/pipeline has been established
- The QueryArch3D:
 1. can handle multi-resolution models
 2. allows 3D interactive visualisation
 3. allows queries of geometries & attributes,
 4. can be used locally or on-line...
- Initial results fulfil the requirements...
- …but it is still a prototype!
• (Some) future improvements:
 – Further tests and debugging
 – Add more LoD2-3-4 models (and textures!)
 – Complete integration of remaining data
e.g. add multimedia contents
 – Add more query & analysis functions:
 • Switch on/off reconstructed models
 •
 – Create user-friendly interface for data administration
Thank you for your attention

CONTACTS

G. Agugiaro, F. Remondino: \{agugiaro, remondino@fbk.eu\}
G. Girardi, R. De Amicis: \{gabrio.girardi, raffaele.de.amicis\}@graphitech.it
J. Von Schwein: jvonschw@unm.edu
H. Richard-Rissetto: heather.richards@humlab.umu.se

ACKNOWLEDGEMENTS

M. Forte and F. Galeazzi (UC Merced, USA)
L. Ackley (University of New Mexico, USA)
A. Rizzi (Fondazione Bruno Kessler, Trento, Italy)